Scrypt is a rather crypting scoring language that runs as a MAX object. You
create score files using your favorite text editor and load, compile and run them
with the scrypt object. Scrypt owes much of its hierarchical process structure to
HMSL, though it is also quite different in many ways. A scrypt score is a list
structure, each node of which has a scheduling method for its children.
Scheduling methods include parallel, sequential, random, shuffled, finite state
machine, random walk, etc. At the bottom of the tree, leaf nodes can be such
things as pitches, durations, controllers, literal MAX messages, or any of a
number of property variables which determine various parameters such as tonic
pitch, scale, sustain, velocity, channel etc. The user can define many list
structures and and start and stop them externally by sending messages to the
scrypt object.

Below is a very simple scrypt score.

units equal 12; // define 12 equal as the current tuning
mode maj 0 2 4 5 7 9 11; // define a major scale

main = [// define a sequential list
1120 // 120 beats per minute
“0,maj // set scale root to 0 (C) and scale to 'maj' as
// defined above.
@1 // use MIDI channel 1
#1 // set output pipe to 1 - explained later
{ // define an event list, duration list pair
// event list :
4.3 // octave 4 scale degree 3
1234567 // keep using octave 4
// and play degrees 1-7
5.1 // end on octave 5 scale degree 1
// duration list :
1/2 // 1/2 of a beat (not a half note!)
11111118 // retain 2 as default denominator
// and play 7 more half beats
// followed by
// one duration of 8 half beats
}*2 // end of event/duration list, repeat it twice
1; // end of score

Here's the same thing more compressed:

main = [!120 “0,maj @1 #1
{ 4.3 123456 738 | 1/21 1111118 }*2
1i

Note above that pitch 4.8 is equivalent to pitch 5.1.

Here it is again using a repeat and transpose loop for the ascending scale and
a repeat loop for the 1/2 beats :

main = [!120 "0,maj @1 #1
{ 4.3 [11%8""1 | [1/2]1*8 8/2 }*2
1i

[1]1*8""1 means play scale degree one in the current octave, repeat 8 times
("*8"), and transpose up by one each time through the loop ("~ ~1").

Scheduling methods :

(1 sequential
All children are played in sequential order.

-[1 parallel
All children are started simultaneously. List is done when all children
have stopped.

parl[l] parallel one
All children are started simultaneously. List is done when any child stops.
All other children which have not yet stopped are stopped.

rand[] random
One child chosen at random from the list is started.

xrand[] exclusive random
One child chosen at random from the list excluding the one previously
chosen is started.

shuf]] shuffled

The list of children are played in a shuffled order, each child being played
once. In addition the first child chosen will never be the same one as the last
child chosen in the previous iteration.
Example:

shuflab cde]

one of many possible executions :

caebd

walk(] random walk

The first child is chosen from the list at random. Subsequently, each time
the list is repeated the child either preceeding or following the previously played
child is played.
Example:

walk[ab cd e]*8

one of many possible executions :

dedcbcba

alt[] alternating

Each time this list is executed one child is played, the first time being the
first child, the second time the second child and so on until at the end of the list it
goes back to the beginning. Repeats cause the same child to repeat.

Examples:
[altfab c] |*5

executes in this order:
abcab

[altfab c]*2]*5
executes in this order:
aabbccaabb

repl[] replace

Intended to be use as the top level list structure. When children are
commanded to be started via start <groupname> <nth> messages, any currently
executing child is immediately stopped and the new one is started.

qll queued

Intended to be use as the top level list structure. When children are
commanded to be started via start <groupname> <nth> messages, if there is no
child currently executing, then it is started immediately, otherwise it is put on a
queue and will execute as soon as all children before it in the queue have
executed. The maximum queue length is 32.

nth <var>[] switchable

The value of the variable determines which child will execute. All values
less than one start the first child. All values greater than the number of children
in the list roll over to start the mod nth child.

strum <delay>[] strum
Children are started nearly simultaneously, each one separated by
<delay> milliseconds from the previous in order.

phase <var> [] phased

The first child executed is given by the value of the variable, then all
children are executed until wrapping around to the first one.

phase phasevar[abcde]

if phasevar is equal to 3 then the above executes as :

cdeab

fsm|] finite state machine

Scrypt messages :

read <filename-optional>
Reads and compiles the file. If no file name is given you will get a dialog
box. If there are compilation errors they will appear in the MAX window.

reread
Reads the previous file in again. This is useful when editing a score.

tempo <bpm>
Set tempo in beats per minute. The internal script can set the tempo on its
own so it is usually better to use the speed control to alter playback rate.

speed <scalefactor>
Playback speed control. 128 is normal, 256 twice as fast, 64 half speed.

pause
pauses the scheduler

continue
restarts the scheduler after a pause

start <group name-optional> <child index-optional>

If the child index is given then the nth child of the named group is started.
If the group name only is given, then that group is started. Otherwise the group
named main, if there is such, is started.

stop <group name-optional> <child index-optional>
Immediately stops a group, interpreting the arguments in the same way as
start.

stopreq <group name-optional> <child index-optional>
Politely stops a group at its next normal repeat.

setvar <varname> <atom value>
Sets the value of the user variable to the value given.

debug <flag>
Turns on/ off debugging, if any, in the current version of the code.

print
prints the hierarchy to the MAX window. Only for my debugging
purposes.

Scrypt messages for Output Pipe control:

mute <outpipe> <l=on/0=off>
mutes output from the given output pipe.

solo <outpipe> <1/0>

If 1 then mutes all out pipes but the current one, else unmutes all out
pipes. This is not implemented as nicely as it is done on most mixing boards, i.e.
muting and soloing are not independant controls.

delay <outpipe> <milliseconds>

adds milliseconds to the number appended to all noteon messages from
the outpipe. This causes the patcher scryptstdout to delay the noteon/noteoff.
Useful for experimenting with 'human feel' mumbo jumbo and Reich-like
gradual phasing.

vscale <outpipe> <scalefactor>

scales velocity values by the scale factor. 128 is normal, 256 double the
velocity,
64 is half the velocity.

sscale <outpipe> <scalefactor>

scales sustain percentage values by the scale factor. 128 is normal, 256
double the sustain,
64 is half the sustain.

xposet <outpipe> <offset>
transposes all output from pipe by <offset> scale degrees in whatever the
current scale is.

xposec <outpipe> <offset>
transposes all output from pipe by <offset> tuning units in whatever the
current tuning is.

clean
sets all pipes to normal output states, i.e. unmuted, no delay, transpose, or
scaling.

